
Dedalus: An Open-Source Spectral Magnetohydrodynamics Code

Keaton Burns

University of California Berkeley

Jeff Oishi

SLAC National Accelerator Laboratory

Received ; accepted

ABSTRACT

We developed the magnetohydrodynamic (MHD) capabilities of Dedalus,

an open-source Python-based hydrodynamics simulation, to explore and com-

pare the properties of the standard and helical magnetorotational instabilities.

Dedalus is a spectral code that uses external FFT libraries and parallelization

with the goal of achieving speeds competitive with codes implemented in lower-

level languages. This paper will outline the MHD equations as implemented in

Dedalus, the methods taken to improve the performance of the code, and the

initial results of our simulations.

Contents

1 Introduction 3

2 Dedalus Development 3

2.1 MHD Equations . 3

2.2 Spectral Implementation . 4

2.3 Temporal Integration . 5

2.4 Shearing Box . 6

2.5 FFTs and Parallelization . 9

3 Magnetorotational Instability Results 9

4 Conclusion 10

2

5 References 10

1. Introduction

The magnetorotational instability (MRI) is a fluid instability that causes the onset of

turbulence in magnetized disks and transports angular momentum outwards. It is believed

to be an important mechanism in the physics of accretion disks. While not believed to exist

in astrophysical disks, a second instability caused by a helical magnetic field has also been

discovered. This helical magnetorotational instability (HRMI) may be easier to produce in

ongoing laboratory experiments using liquid sodium. The applicability of such experiments

to the processes in astrophysical disks is the subject of our investigation.

2. Dedalus Development

Dedalus is an open-source spectral hydrodynamics code, written in Python 2.7. It

was designed to be flexible and easy to use, with the FFTs handled by external libraries

and/or parallelization to abate the performance penalties of using a high-level language.

The code makes extensive use of object-oriented programming, facilitating the modular

implementation of different domain representations and physics. In addition to the

magnetohydrodynamics (MHD) physics described below, Dedalus is also currently being

used to study linear cosmology and baryon acoustic oscillations -NEED REFERENCE-.

Dedalus is currently hosted on a public bitbucket repository.

2.1. MHD Equations

We begin with the equations governing incompressible MHD: the incompressible

Navier-Stokes equation with the Lorentz force and viscosity, the induction equation with

3

magnetic diffusivity, mass continuity, and Gauss’s law for magnetism (in Gaussian units,

and with ∂t indicating ∂
∂t

):

∂tu + u · ∇u = −∇p
ρ0

+
FL

ρ0

+ ν∇2u, (1)

∂tB = ∇× (u×B) + η∇2B, (2)

∇ · u = 0, (3)

∇ ·B = 0, (4)

Expanding the Lorentz force as

FL =
(∇×B)×B

4π
=

B · ∇B

4π
− ∇B

2

8π
, (5)

Eq. (1) becomes

∂tu + u · ∇u = −∇Ptot
ρ0

+
B · ∇B

4πρ0

+ ν∇2u, (6)

Ptot = p+
B2

8π
. (7)

2.2. Spectral Implementation

In a periodic domain, any sufficiently smooth field variable can be represented by its

discrete Fourier decomposition on the grid. That is, for some function f , we can write

f(x, t) =
∑
k

f̂(k, t)eixiki , (8)

f̂(k, t) =
∑
x

f(x, t)e−ixiki . (9)

In Fourier space, the spatial derivatives in the governing equations transform to trivial

multiplications: ∇ FT−→ ik. Pseudospectral codes, such as Dedalus, use Fast Fourier

Transforms (FFTs) to compute these spatial derivatives and transform the problem into a

system of ordinary differential equations, which are then temporally integrated in Fourier

space.

4

Taking the Fourier transforms of Eqs. (5), (3), and (4) yields

∂tû = −û · ∇u− ikP̂tot
ρ0

+
B̂ · ∇B

4πρ0

− νk2û, (10)

ik · û = 0, (11)

ik · B̂ = 0. (12)

We then take the scalar product of ik with Eq. (10) to arrive at an expression for the total

pressure:

P̂tot
ρ0

=
ik · û · ∇u

k2
− ik · B̂ · ∇B

4πρ0k2
. (13)

Using the identity ∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B along

with Eqs. (2), (3), and (4), we see

∂tB = B · ∇u− u · ∇B + η∇2B. (14)

Taking the Fourier transform of Eq. (14), we arrive at the time-evolution equation for B̂:

∂tB̂ = B̂ · ∇u− û · ∇B− ηk2B. (15)

The nonlinear terms (û · ∇u, û · ∇B, B̂ · ∇u, and B̂ · ∇B) in Eqs. (10) and (15) are

computed in real space. To eliminate aliasing effects, we employ the Orszag 2/3 rule, zeroing

any mode with a k component greater than or equal to 2/3 of the Nyquist wavenumber

in that direction. This zeroing is done before every reverse Fourier transform, after every

forward Fourier transform, and at each temporal evolution.

2.3. Temporal Integration

The ODEs produced by the physics modules, along with the initial conditions specified

at the start of the simulation, form an initial value problem that is integrated using explicit

5

Runge-Kutta methods, specifically the second-order midpoint method. For simulations with

viscosity and/or magnetic diffusivity, an integrating factor is used to evaluate the linear

steps used to construct the Runge-Kutta stages. Consider Eq. (10) for a specified mode k,

with the non-viscous terms considered to be constant during an integration step:

∂tû(t) + νk2û(t) = RHS. (16)

This is an equation of the form y′(x) + P (x)y = Q(x), which has the exact solution

y(x) =

∫
Q(x)M(x)dx

M(x)
, (17)

where M(x) = e
∫
P (x)dx is called the integrating factor. Hence we find the solution of

Eq. (16) at time t+ dt to be

û(t+ dt) =
[
û(t) +

RHS

νk2
(eνk

2dt − 1)
]
e−νk

2dt. (18)

2.4. Shearing Box

To study the effect of the MRI, we perform local simulations where our domain

represents a small part of an astrophysical disk. The domain is taken to be a co-rotating

box, whose left edge is a distance r0 from the axis of rotation, and whose length in each

dimension is much less than this fiducial radius. In the co-rotating frame, we take the unit

vector ex in the outward radial direction, and the unit vector ez along the axis of rotation.

The box is rotating with an angular velocity Ω0 = Ω0ez = Ω(r0)ez.

The radial dependence of angular velocity in a Keplerian disk, Ω(r) =
√
GMr−3/2,

gives rise to a background linear shear flow in this domain: with the domain moving at

the angular velocity of the left (inner) edge, the box will shear in the x direction with a

velocity of −3
2
Ω0xey, as shown in Fig. 1. This shear motivates the construction of a domain

representation and a corresponding physics implementation to handle MHD in a box with

an arbitrary local linear shear.

6

Fig. 1.— Co-rotating local domain as viewed from an inertial frame. Lower angular velocity

at larger radii results in a local linear shear across the x direction of the local domain. The

size of the box relative to r0 is exaggerated for clarity.

Consider an arbitrary power-law shearing profile, Ω(r) = CrS (which arises from an

attractive force of magnitude ρ0C
2r2S+1 and gives rise to a linear background shear in the

local frame with velocity SΩ0xey. Hence C =
√
GM and S = −3/2 for Keplerian rotation).

In this case, the centrifugal (−Ω0 × (Ω0 × r) = Ω0
2rex) and attractive (−C2r2S+1ex)

accelerations partially cancel (via approximations utilizing x, y, z � r0):

arad = (Ω0
2 − C2r2S)rex ≈ −2SΩ0

2xex. (19)

With this radial acceleration and the Coriolis acceleration (−2Ω0 × v), Eq. (1) for the

velocity field in the rotating frame, v, becomes

∂tv + v · ∇v = −∇p
ρ0

+
FL

ρ0

+ ν∇2v − 2SΩ0
2xex − 2Ω0 × v. (20)

Decomposing v into the background shear flow and velocity perturbations (v = SΩ0xey+u),

Eq. (20) becomes

∂tu + u · ∇u = −∇p
ρ0

+
FL

ρ0

+ ν∇2u + 2Ω0uyex − (2 + S)Ω0uxey − SΩ0x∂yu. (21)

7

Due to the shear of our frame, the forward and reverse Fourier transforms become:

f̂(k, t) =
∑
x

f(x, t)e−i(xiki−SΩ0xtky), (22)

f(x, t) =
∑
k

f̂(k, t)ei(xiki−SΩ0xtky), (23)

to maintain periodicity along the shearing direction.

Hence, we define the fixed-grid wavevector K as a function of the Lagrangian (shearing)

wavevector k and time, K(k, t) = (kx − SΩ0tky, ky, kz), and when transforming to Fourier

space, the derivative operators become

∂x → i(kx − SΩ0tky) = iKx, (24)

∂y → iky = iKy, (25)

∂z → ikz = iKz, (26)

∂t → ∂t − iSΩ0xky. (27)

The analogs of Eqs. (10) and (13) are then

∂tû = −û · ∇u− iKP̂tot
ρ0

+
B̂ · ∇B

4πρ0

− νK2û + 2Ω0ûyex̂ − (2 + S)Ω0ûxeŷ, (28)

P̂tot
ρ0

=
iK · M̂
K2

− iK · L̂
4πρ0K2

− 2iΩ0ûyKx

K2
+

(1 + S)2iΩ0ûxKy

K2
. (29)

Eq. (14) becomes, in velocity perturbations,

∂tB = B · ∇u− u · ∇B + η∇2B + SΩ0Bxey − SΩ0x∂yB, (30)

and the analog of Eq. (15) becomes

∂tB̂ = B̂ · ∇u− û · ∇B− ηK2B + SΩ0B̂xeŷ. (31)

8

2.5. FFTs and Parallelization

Although Dedalus is written in Python, the FFTs dominate the computational cost of

a simulation, meaning that optimizing the FFTs largely negates the performance penalties

of using a high-level language, while maintaining ease of use and speed of development.

Outsourcing the FFTs from Python to FFTW, a C-based library that optimizes FFT

routines based on local hardware, results in a substantial speed improvement over Python’s

(i.e. numpy’s) built-in FFT algorithms. Much greater gains can be made on a GPU using

Nvidia’s CUDA architecture to compute the FFTs and other calculations.

Finally, MPI-based parallelization was implemented, allowing a single simulation to

simultaneously run as many separate tasks. To achieve this, the computational domain

is evenly divided among the N tasks along the kz direction in Fourier space. The reverse

Fourier transform is then accomplished in a series of steps, as depicted in Fig. 2. First,

each task performs a 2D IFFT in the kx and ky directions on its dataset, and the shearing

phase shift as applied as in Eq. (23), if necessary. Second, an MPI All-To-All call is issued,

in which each task evenly divides its data N times in the y direction, and sends the Nth

slab to the Nth task. Each task then stacks the N slabs it has received, and performs a 1D

IFFT in the kz direction. The resulting datasets have gone through a full 3D IFFT, and the

data is evenly divided among the tasks along the y direction in real space. The parallelized

forward transform is the reverse of this process.

3. Magnetorotational Instability Results

Note: simulations in progress. I hope to have results by the end of the week.

9

Fig. 2.— Task cuts along kz in Fourier space, MPI All-To-All call, task cuts along y in real

space.

4. Conclusion

Dedalus is among the first entirely open-source spectral MHD codes. The Python

development environment facilitate ease of use and code development, and our emphasis

on object-oriented techniques have helped make Dedalus a very modular code which can

be easily adapted to study a variety of problems. The parallelized FFT algorithms, the

use of external libraries, and the incorporation of GPU-based calculations using CUDA

all contribute substantially to the performance of the code. With shearing-box MHD

simulations underway, we hope to use Dedalus to help identify points of comparison and

departure between current lab-based HMRI experiments and the standard MRI operating

in astrophysical accretion disks.

5. References

10

